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Summary of the Milestone 

In Task 3.2 of WP3 we aim to develop tools that use readily available data sources at certain 

scales to predict hard-to-measure properties of biotic datasets at other scales. We further aim 

to make such methods more accessible to potential users by implementing them in open-

access application programs in widely used platforms such as R. In subtask 3.2.1 

(UnivLeeds) we use a limited number of sparsely-distributed fine-resolution samples of 

assemblages to predict the number of species in a larger spatial extent, while accounting for 

the non-additivity of species richness and unsampled species. In subtask 3.2.2 (UnivLeeds, 

NHM) we aim to use widely available atlas data at coarse resolution to predict the proportion 

of occupied cells and the area of occupancy at much finer resolutions. Subtask 3.2.3 (UFZ) 

will offer a “Virtual Ecologist” modelling framework, which will sample from the outcomes 

of individual-based models (e.g. RangeShifter, FunCon) in order to downscale from species 

distribution and abundances, as well as connectivity, to local patterns of (observed) 

occurrence and abundance. For each of the above subtasks we briefly report in this milestone 

on the main models that are likely to be included in the application programs.  

 

Introduction 

Task 3.2 aims to develop tools that use readily available data sources at certain scales to 

predict hard-to-measure properties of biotic datasets at other scales. We focus on several 

subtasks, each aiming to provide important information for effective management and 

monitoring at relevant scales. In addition, the scientific literature includes several existing up-

scaling and down-scaling methods that may contribute to effective conservation, yet are not 

easily applied without training. Therefore, in task 3.2 we aim to make such methods more 

accessible to potential users by implementing them in open-access application programs in 

widely used platforms such as R, or as stand-alone, free programs, with appropriate and 

accessible documentation. We focus on three main objectives: 1. estimating the number of 

species present at large extents from sparse fine-resolution data; 2. predicting species 

occupancy rates at fine resolutions from coarse resolution atlas data; and 3. down-scaling the 

output of individual-based models through a virtual ecologist tool to validate spatially-

explicit models and optimize monitoring efforts. 

Knowing the number of species present within a large area is crucial for effective 

management and conservation. However, often only a limited number of fine resolution 

samples at small extents are available. However, the number of species in the large extent is 
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neither the sum over all fine resolution samples, nor their average, due to the non-additivity 

of diversity across different spatial scales. In subtask 3.2.1, led by UnivLeeds, we include a 

set of models that use a limited number of sparsely distributed fine resolution samples of 

assemblages to predict the number of species in a larger spatial extent, while accounting for 

the non-additivity of species richness and unsampled species.  

In recent years, several methods that up-scale species richness from fine resolution 

samples to estimate richness at large extents have been developed, yet many of the methods 

are rarely applied by potential users due to their high complexity and low accessibility.  

Additionally, several novel methods that, in addition to up-scaling diversity, can also predict 

important biodiversity patterns (e.g., the species-abundance distribution) are currently being 

developed and are expected to supplement existing methods. As part of deliverable D3.1 we 

will assemble all these methods into a single software application. As well as increasing 

accessibility, having all methods in a single application may allow a more detailed 

comparison of the methods' performance under various scenarios, which may lead to 

effective rules of thumb for end users.  

In subtask 3.2.2 (UnivLeeds and NHM) we aim to use widely available atlas data at coarse 

resolution to predict the proportion of occupied cells and the area of occupancy at much finer 

resolutions.  Published distribution patterns at coarse resolutions are becoming increasingly 

available. For other species, the online collection of large numbers of biodiversity records at 

fine resolution may be used to create coarse grain distribution patterns with increasing levels 

of accuracy. However, such atlas data are usually too coarse in resolution to provide useful 

information for conservation and management. In recent years, several methods that predict 

the proportion of occupied cells at fine grains from coarse-grain occurrence patterns have 

been proposed. In subtask 3.2.2, we aim to develop an open source software application, 

increasing the accessibility of these methods to potential users. In addition, we will explore 

the potential use of down-scaling methods to assess the thresholds of the IUCN Red List 

criterion for Area of Occupancy.  

Subtask 3.2.3 (UFZ) develops a down-scaling methodology which is particularly useful 

for individual-based, process-based models: a “virtual ecologist” approach, where one 

samples from population models to assess the relationships between larger-scale predictions 

of abundance and distributions, and local-scale observed patterns. In this way one can 

validate spatially-explicit models such as FunCon (Pe'er et al. 2011) and RangeShfiter 

(Bocedi et al. 2014), and optimize monitoring efforts in space and time.  
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Progress towards objectives 

We have made considerable progress (see below) toward our main objective – having the set 

of up-scaling and down-scaling tools ready for deliverable D3.1, due in month 30 (May 

2015). Furthermore, an informative account of each tool was circulated to partners from WP4 

and WP5, to explore the applicability of the tools to the trend analyses carried out by WP4, 

and the quality control and validation described in task 5.2.  

 

Achievements and current status 

For each of subtasks 3.2.1 and 3.2.2 we have conducted a thorough literature review and 

identified published tools that will be included in the software application. We supplement 

these published tools with several tools that are currently being developed, or that were 

recently developed but have yet to be published. For each tool we identified the basic data 

requirements, while distinguishing between data needed for applying the tools and data 

required for assessing the performance of the tool. As the tools usually aim to fill gaps in 

biotic information that arise from methodological barriers (e.g., limited funds for sampling), 

the data requirements for tool application are usually considerably less than those required for 

performance assessment. Below we describe in greater detail the applicability and models 

that will be included in subtask 3.2.1 (section 1) and subtask 3.2.2 (section 2).  

For the virtual ecologist tool (subtask 3.2.3), we have identified main requirements and 

potentials – especially with respect to individual-based models utilised (or potentially 

utilised) in Work Package 4 (tasks 2-4). We have further initiated the conceptual 

development of the model. The background, envisioned model concepts, components, 

parameters and potential applications are delineated in section 3.  

 

Challenges and further/future developments 

In the next few months we plan to progress with the actual codification of the models 

described in the sections below, in the development of new models, and in the application of 

the models using data from one or more of the EU-BON focal test sites or from other sources. 

We anticipate the following challenges will lie ahead: 

1. It is expected that in the future new models will continue to be created and existing 

models refined. We hope to be able to continue to update the application software 

with these developments as they are published. 
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2. For some models described here or for future new models, the R programming 

environment may prove to be inappropriate due to computational limitations that are 

beyond the scope of EU-BON (e.g., limitation on memory allocation, inefficient 

convergence algorithms, or dependencies on external programs). In such a case we 

will either exclude the model from the application package, provide an untested code 

that should work if the limitations are tackled, or provide an algorithm in an 

alternative programming platform.  

3. As noted above, some of the models require only widely available data for their 

application, yet considerably more data for performance assessment. A challenge for 

EU-BON is to find data-sets that are detailed enough for assessing the performance of 

the models. Some progress has already been made in identifying suitable data-sets.  

4. The R packages will provide multiple predictions using different methodologies. 

Therefore, it is likely that the predictions themselves will differ between methods.  A 

future challenge will be to identify rules of thumb and recommendations on the 

suitability of different methods under different scenarios.  

5. Most tools require standardized sampling at least at one scale. A challenge of many 

tools is to find uses for the growing mass of occasional and haphazardly collected 

observations and specimens (e.g., GBIF) and/or to assess the sensitivity of the models 

to biases in input data.  
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Section 1:   

Subtask 3.2.1 –  Up-scaling species diversity from fine to coarse scales 

Policy is often concerned with the preservation of biodiversity at coarse spatial scales, at 

regional, national, continental (e.g. Gothenburg targets, 2001) or global (e.g. CBD, 2002) 

levels, whereas most biodiversity monitoring is conducted at very fine spatial scales 

(sometimes as little as a fraction of a m2). Even with considerable sampling effort at fine 

spatial scales, not all species occurring in larger extents are likely to be sampled. Therefore, 

the total number of species found when pooling all samples is generally an underestimate of 

the actual number of species found in the larger extent. In subtask 3.2.1 we include a set of 

models aiming to predict the hard-to-measure property of the number of species in a large 

extent from a widely available source of input data – a limited number of fine resolution 

samples randomly spread within the extent. The models differ from one another in their data 

requirements and in the theoretical basis used to deal with the non-additivity of species 

richness and the non-linearity of species accumulation curves and species-area relationships 

(SAR).  

In the software application we aim to include several models that require only incidence 

(occurrence) data, along with additional models that require abundance data. Among other 

potential models, the incidence-based models will include the TS curve model of Ugland et 

al. (2003), the true and sampled SOD (Species-occupancy distribution) model of Shen and He 

(2008) and an additional model that relies on a three-dimensional manifold SAR (Polce 

2009). In addition, we will include the Harte et al. (2009) model that requires an estimate of 

the mean number of individuals in fine resolution samples. Finally, we will include two 

models, the RAD-based model (RAD – Ranked-Species Abundance) of Ulrich and Ollik 

(2005) and an additional model based on a pair correlation function (Azaele et al., 

unpublished), both requiring information on the abundance of each sampled species in each 

fine resolution sample.  

It is important to note that although we assemble these models here as tools to up-scale 

diversity, most of the methods are able to predict additional important biodiversity patterns 

such as the SAR (species-area relationship) and SAD (species-abundance distribution). As 

both of these are fundamental to many ecological applications and theoretical models, the 

resulting software application may be used for more than up-scaling diversity data. 

Furthermore, although the input data requirements of the models differ, all models provide 

predictions for the same property – the number of species in a large extent. As the different 
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models base their predictions on different assumptions, we expect the models to differ from 

one another in their predicted values. Currently, we therefore require knowledge of the true 

number of species if we wish to assess the performance of the models. One of the challenges 

that lies ahead is to develop methods that estimate the confidence of the models’ predictions 

without clear and complete knowledge of the true species richness.  

Below we provide a more detailed account of each model, focusing on the main ideas 

behind them and on their mathematical developments. For published methods, we have tried 

to keep the same notations used in the original publications. For the manifold SAR and 

Azaele et al. unpublished PCF models, we provide a more conceptual description and intend 

to leave the formal mathematical descriptions to future publication by the models' developers.  

Nonetheless, the documentation of deliverable D3.1 is expected to include the full 

mathematical description of all models eventually included in the application software.  

 

1. TS Curve method  (Ugland et al. 2003) 

 

Most assemblages have a complex covariance structure between species and sub-areas (e.g., 

habitats). This leads to a largely unrecognized aspect of predicting the number of species by 

up-scaling: with the addition of new sub-areas the observed species accumulation curve will 

not only extend the previous accumulation curve, but also tend to lie above the accumulation 

curves for smaller sub-areas. The rate of (vertical) increase of the species-accumulation 

curves provides the best estimate of total species richness. Ugland et al. (2003) first derived 

an exact analytical expression for the expectance and variance of the sample-based species 

accumulation curve in all random subsets from a given area (note that one of the required 

parameters of the expression is the actual number of species in the entire extent).  

Next, the whole area is divided into sub-areas, and an increasing sequence of accumulation 

curves is constructed as follows. The first accumulation curve (the bottom curve) is obtained 

by taking the average of all single sub-areas. The second accumulation curve is obtained by 

taking the average of all accumulation curves based on two randomly chosen sub-areas. For 

example, if there are five sub-areas, the total number of subsets of two sub-areas is the 

binomial coefficient 5ൈ4/2ൈ1 = 10, so the second accumulation curve will be the average of 

10 curves. In the same way the third accumulation curve is the average of accumulation 

curves based on all possible subsets of three sub-areas. This procedure is repeated until we 

end up with the last accumulation curve which is obtained by randomization of all available 

samples in the data set. It is the terminal points of this increasing sequence species 
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accumulation curves that contain the crucial information of the accumulation rate of new 

species as sampling effort is increased to new sub-areas. The total species curve (the TS-

curve) is then defined as the curve connecting these end points. In a semi-logarithmic plot 

these curves frequently appear linear, and the TS-curve estimator is then simply the linear 

extrapolation of the TS-curve to the whole area in the semi-log plot. 

It is important to note that the TS log-linear model requires a-priori grouping of samples 

to sub-areas. Therefore, it may be suitable for systems for which the set of fine-resolution 

samples are stratified according to habitats or land-covers. In other cases, samples may be 

grouped according to spatial proximity. Another option is to add an additional analytical step 

prior to the TS-curve analysis in which the samples are assigned to classes. For example, 

Jobe (2008) used a hierarchical clustering algorithm known as partitioning around medoids, 

yet any unsupervised classification algorithm may be suitable as well.  

 

2. True and sampled SOD model (Shen and He 2008) 

 

Most spatially-implicit methods that estimate species richness in a large area from a set of 

random samples taken within it are based on resampling with replacement. Therefore, they 

are more applicable to mobile organisms, and less so for sedentary organisms. In fact, when 

applying a sampling-with-replacement based estimator to sedentary organisms, the predicted 

number of species will increase with the number of samples. Therefore, the estimators will 

tend to overestimate species richness when the number of samples increases, resulting in 

greater, rather than smaller, deviation from the true species richness with increasing sampling 

intensity.  In other words, for sedentary organisms (e.g., plants) sampling-with-replacement 

based estimators will not converge to the true value with increasing number of samples as 

expected from a good estimator.  

Shen and He (2008) developed a novel incidence-based approach that relies on sampling 

without replacement. The basic idea behind the method is to estimate the number of 

unsampled species without the usage of complex combinatorial terms. To do so, Shen and He 

(2008) make two simplifying assumptions. First, they assume that the number of occupied 

quadrats of a species (in sampled and unsampled locations) follows a zero-truncated binomial 

distribution. The zero is truncated from the binomial distribution to ensure the probability 

distribution will predict the correct number of species when the entire area is sampled.   

Secondly, Shen and He (2008) assume that the probability of presence/absence of a species in 

a quadrat that is required by the binomial distribution follows a modified beta distribution.  
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The model starts with a zero truncated binomial distribution that describes the probability 

of each species (i=1, 2, …, S) occurring in exactly Φi quadrats, out of T quadrats covering the 

entire extent. The zero-truncated binomial distribution is parameterized by T and pi (the 

binomial probability of occurrence of species i). The probability mass function (pmf) of the 

zero-truncated binomial distribution is thus given by: 

 ܲሺΦ௜ ൌ ௜ሻ݌|߮ ൌ ቀ்ఝቁ ∙
௣೔
ക∙ሺଵି௣೔ሻ೅షക

ଵିሺଵି௣೔ሻ೅
												߮ ൌ 1,2, … , ܶ (1)                         

Next, a random sample of t quadrats is taken from the above pmf, and the expression for 

the observed number of sampled quadrats in which species i is found (noted as Xi) can be 

developed as a hypergeometric distribution: 

 ܲሺ ௜ܺ ൌ ,Φ௜|ݔ ௜ሻ݌ ൌ
ቀಅ೔ೣ ቁ∙ቀ

೅షಅ೔
೟షೣ ቁ

൫೅೟൯
  (2) 

Shen and He (2008) then average equation 2 over all realizations of Φi, thereby retaining a 

pmf that is conditional only on pi: 

 ܲሺ ௜ܺ ൌ p௜ሻ|ݔ ൌ ൫௧௫൯ ∙
௣೔
ೣ∙ሺଵି௣೔ሻ೟షೣ

ଵିሺଵି௣೔ሻ೅
െ

ሺଵି௣೔ሻ೅∙ூሺ௫ୀ଴ሻ

ଵିሺଵି௣೔ሻ೅
ݔ									 ൌ 0,1,2, … ,  (3) ݐ

With I(·) being an indicator function. As the number of species S and the binomial probability 

pi of each species i=1, 2,…,S, are unknown, Shen and He (2008) assume that p1, p2,…,pS are 

random draws from a modified beta distribution, parameterized by α>0 and β>0. Thus the 

unconditional distribution of Xi becomes: 

 ܲሺ ௜ܺ ൌ ሻݔ ൌ ቐ
,ߙሺܭ ሻߚ ∙ ൫௧௫൯

୻ሺ௫ାఈሻ∙୻ሺ௧ାఉି௫ሻ

୻ሺ௧ାఈାఉሻ
ݔ																										 ൐ 0

,ߙሺܭ ሻߚ ቂ୻
ሺఈሻ∙୻ሺ௧ାఉሻ

୻ሺ௧ାఈାఉሻ
െ ୻ሺఈሻ∙୻ሺ்ାఉሻ

୻ሺ்ାఈାఉሻ
ቃ ݔ																	 ൌ 0

 (4) 

With K(α,β) being a normalizing factor: 

,ߙሺܭ  ሻߚ ൌ ቂ୻
ሺఈሻ∙୻ሺఉሻ

୻ሺఈାఉሻ
െ ୻ሺఈሻ∙୻ሺ்ାఉሻ

୻ሺ்ାఈାఉሻ
ቃ
ିଵ

 (5) 

The above unconditional distribution is then used to parameterize a multinomial probability 

of fk - the number of species that occurred exactly k=0, 1, 2, …, t times in the set of t samples. 

That is to say, Shen and He (2008) assume that (f0, f1, f2, …, ft) is a multinomial distribution 

with a total S and probabilities (ρ0, ρ1, ρ2, …, ρt) that sum to one and satisfy: ρk = P(Xi=k) of 

equation 4. The likelihood function of this multinomial distribution is given by: 

,ሺܵܮ  ,ߙ ሻߚ ൌ ௌ!

ሺௌି஽ሻ!∙∏ ௙ೖ!
೟
ೖసభ

∙ ଴ߩ
ௌି஽ ∙ ∏ ௞ߩ

௙ೖ௧
௞ୀଵ   (6) 

With D being the observed number of species in the set of t quadrats. An estimator of species 

richness is then given by finding the values of α, β and S that maximize the likelihood of 
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equation 6. However, Shen and He (2008) suggest further decomposing equation 6 into two 

terms: 

,ሺܵܮ  ,ߙ ሻߚ ൌ ,௕ሺܵܮ ,ߙ ሻߚ ൈ ,ߙ௖ሺܮ  ሻ  (7)ߚ

The first term is a binomial likelihood function with respect to D, and the second term is the 

likelihood function in respect only to the shape of the observed species occupancy 

distribution: 

,௕ሺܵܮ  ,ߙ ሻߚ ൌ
ௌ!

ሺௌି஽ሻ!∙஽!
∙ ሺ1 െ ଴ሻ஽ߩ ∙ ଴ߩ

ௌି஽  (8) 

,ߙ௖ሺܮ  ሻߚ ൌ
஽!

∏ ௙ೖ!
೟
ೖసభ

∙ ∏ ቀ ఘೖ
ଵିఘబ

ቁ
௙ೖ௧

௞ୀଵ  (9) 

This decomposed form allows finding first ߙො	and ߚመ	- the solution of α and β that 

maximizes the fit to the observed distribution of fk (i.e., without the unknown fk for k=0) 

using equation 9, and then finding the value of S that maximizes the likelihood according to 

equation 8, given ߙො	and ߚመ: 

 መܵ஼ெ௅ா ൌ ܦ ∙ ൥
ଵି

౳൫ෝഀశ෡ഁ൯
౳൫෡ഁ൯

∙
౳൫೅శ෡ഁ൯

౳൫೅శෝഀశ෡ഁ൯

ଵି
౳൫ෝഀశ෡ഁ൯
౳൫෡ഁ൯

∙
౳൫೟శ෡ഁ൯

౳൫೟శෝഀశ෡ഁ൯

൩ (10) 

 

3. The Manifold SAR extrapolation method (Polce 2009) 

 

The species-area relationship (SAR), the curve describing the (non-linear) increase of the 

number of species with area, is considered one of the most fundamental and empirically-

consistent biodiversity patterns. SARs have been subjected to extensive ecological research, 

as is evident from the large number of models suggested to describe them (Tjørve 2003, 

2009), and are considered one of the most potent tools for assessing the change of species 

diversity with scales. Among the various processes that may affect the shape of the SAR 

(Turner and Tjørve 2005), two processes may be considered highly relevant across a wide 

range of scales. Firstly, a larger area encompasses more environmental, evolutionary and 

spatial diversity than a smaller area. Secondly, larger areas also include a larger total of 

individuals, and thus constitute a larger sample of the species pool. These two component 

processes – increased sample size and increased spatial differentiation – may be expected to 

behave rather differently with increasing area, but the two effects can be separated in 

practice. 

Empirically, the SAR of the first process may be explored by increasing the number of 

samples within a pre-defined, constant extent and multiplying the number of samples by the 
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average area of each sample. The SAR of the second process may be explored, conversely, by 

taking a constant number of samples within extents of different areas. These two processes 

are likely to have different functional forms: the samples curve is bound to decelerate towards 

an asymptote, as increasing numbers of samples capture progressively larger fractions of the 

local species pool; in contrast, with increasing extents, the species pool may expand 

indefinitely, even accelerating at very coarse scales e.g. if biogeographic barriers are crossed 

(Hubbell 2001, Allen and White 2003, Rosindell and Cornell 2007).  However, the two 

processes may be modelled simultaneously by extending the SAR from the regular 2 

dimensions to a 3-dimensional SAR, in which one axis represents the area of the sampled 

extent, the second axis represents the area of the samples, and the dependent variable is the 

expected number of species.  

In most cases, the largest empirical value on the sample axis will be smaller than the 

largest value on the extent axis, as only a small portion of the overall extent can be sampled. 

Nonetheless, if enough empirical points in the 3 dimensional space may be extracted from the 

available data through randomized combinations, a 3-D curve can be fitted to the 3 

dimensional space. Interestingly, extrapolating the fitted 3 dimensional curve to the points at 

which the area of the samples equals the extent yields an estimator for the number of species 

in the extent if it was sampled in its entirety: the SAR.  

For example, assume that the 3D SAR curve is well described by the interaction between a 

Morgan-Mercer-Flodin (MMF) model for the samples curve and a power-law model for the 

extent curve, such that: 

ሺܵሻܧ  ൌ 	 ௕భ∙஺೐ೣ೟
್మ∙஺ೞೌ೘

್య

௕రା஺ೞೌ೘
್య

 (11) 

with E(S) being the expected number of species, Aext and Asam being the area of the extent and 

the samples (respectively) and b1, b2, b3 and b4 being fitted parameters. Of course, the 

estimated values of the parameters may not be identical (or even similar) to the maximum 

likelihood values if any of the extent- or sample-curves had been fitted separately. In the 

empirical data, Asam < Aext for any extent, such that the 3-D curve needs to be extrapolated to 

the diagonal line of Asam = Aext. The expected number of species according to the 

extrapolation is the estimate of the species richness in the entire extent of the extrapolation.  

Such a 3-dimensional manifold SAR was recently explored by Polce (2009) and is 

currently being further developed within EU-BON. In the finished software application, we 

will explore various manifold SAR curves such as equation 11, each being a combination of 

two 2 dimensional SAR functions that are suitable for describing either the samples and/or 
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extent curves. This R package will include a model-selection algorithm that first fits a 

selection of different manifold SAR curves to the empirical data, estimates a measure of 

performance for each curve (e.g., AICc) and then provides a model-averaged estimate for the 

Asam = Aext diagonal line.   

 

4. Maximum entropy SAR  (Harte et al. 2009)    

 

Harte et al. (2008) and Harte et al. (2009) developed a model that predicts the shape of the 

SAR based on the theory of Maximum Entropy. The model is based on relatively simple 

geometric and energetic constraints on ecological systems, such as the linear scaling of the 

total number of individuals of all species combined with area. Then the model assumes that 

the system will tend towards the most likely state consistent with the constraints, such that the 

information entropy is maximized. The resulting model takes surprisingly little information to 

parameterize: it requires only the mean number of species found at a single reference scale 

(e.g. of a sample quadrat) and the mean number of individuals per species at that scale.  

The maximum entropy SAR model starts with the SAR equation: 

 ܵሺܣሻ ൌ ܵ଴ ∑ ሾ1 െ ܲሺ݋|݊, ,ܣ ଴ሻሿܣ
ேబ
௡ୀଵ ∙ ߶ሺ݊|ܵ଴, ଴ܰሻ (12) 

With S0 and being the number of species in the area A0, N0 being the total number of 

individuals in area A0, and S(A) being the expected number of species in a sub-area A of A0. 

The summation in equation 12 is over all possible population sizes n=1, 2, … N0 of the 

multiplication of two probabilities: 

 ߶ሺ݊|ܵ଴, ଴ܰሻ is the probability of the species abundance distribution, i.e. the 

probability that a randomly drawn species from the community will have a population 

size of n. 

 ܲሺ݋|݊, ,ܣ  ଴ሻ is the probability that none of the individuals of a species with a total ofܣ

n individuals will be found in sub-area A, such that ሾ1 െ ܲሺ݋|݊, ,ܣ  ’଴ሻሿ is the speciesܣ

probability of occurrence in A.  

Therefore, equation 12 estimates the number of species in sub-area A as the total number 

of species in A0 multiplied by the probabilities of occurrence of each of those species.  

Next, Harte et al. (2009) incorporate constraints to the two probabilities listed above and 

solve for the maximum entropy solution using Lagrange multipliers.  Note that in this form, 

equation 12 is a down-scaling method, rather than an up-scaling method, as it uses 

information on the number of species in the larger extent to predict the species richness in the 
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smaller extent. However, Harte et al. (2009) simplify the solution for the halving of the area 

case to derive a specific equation that can be used for both down-scaling and up-scaling: 

 ܵሺܣሻ ൌ ܵሺ2ܣሻ݁ఒഝ,ಲ െ ܰሺ2ܣሻ ଵି௘షഊഝ,మಲ

௘షഊഝ,మಲି௘షഊഝ,మಲሺಿ
ሺమಲሻశభሻ ∙ ൬1 െ

௘షഊഝ,మಲಿ
ሺమಲሻ

ேሺଶ஺ሻାଵ
൰ (13) 

With ߣథ,ଶ஺ being a Lagrange multiplier and S(2A) the unknown number of species in the area 

2A. After assuming that total abundance of all species combined scales linearly with area, 

Harte et al. (2009) set N(2A) = 2·N(A), thereby reducing the number of parameters in equation 

13 to two – ߣథ,ଶ஺ and S(2A). Therefore the model relies on another equation relating the same 

two parameters that arises from the maximum entropy constraints on the species abundance 

distribution: 

 
ௌሺଶ஺ሻ

ேሺଶ஺ሻ
∙ ∑ ݁ିఒഝ,మಲ∙௡ேሺଶ஺ሻ

௡ୀଵ ൌ ∑ ௘షഊഝ,మಲ∙೙

௡
ேሺଶ஺ሻ
௡ୀଵ  (14) 

Finally, the S(2A) is found by numerically solving equation 13 and 14, and an iterative 

procedure can be used to up-scale to any large scale that is a multiple of two times the area of 

A (e.g.,  S(4A), S(8A), etc.).  

 

5. RAD-based models   (Ulrich and Ollik 2005) 

 

Ulrich and Ollik (2005) made use of a very different method based on Relative Abundance 

Distributions (RADs), which were originally designed to estimate the upper and lower limits 

of species richness in a focal region. Under the assumption that the occupancy - species rank 

order distribution is either a log-normal or a log-series and that the least abundant species has 

an occupancy of one cell, they estimated upper species richness boundaries from the log-

series by: 

ሺܵሻܧ  ൌ 	 ୪୬
ሺூ௡௧ሻା୪୬ሺேಲభሻି୪୬	ሺேೄభሻ

௦௟௢௣௘
  (15) 

and lower species richness boundaries from the log-normal distribution by: 

ሺܵሻܧ  ൌ 	 ଶ∙୪୬
ሺூ௡௧ሻା୪୬ሺேಲభሻିଶ∙୪୬	ሺேೄభሻ

௦௟௢௣௘
  (16) 

where ln(Int) and slope are the natural logarithm of the intercept (Int) and the slope of an 

exponential regression through the middle 50th percentile of the respective abundance 

distributions, and ln(NS1) and ln(NA1) are the natural logarithms of the numbers of individuals 

of the most abundant species of the whole community within the area Atotal and of the sample 

of area A1, respectively. NA1 comes from proportional up-scaling of the sample area to total 

area: NA1 = NS1·Atotal /A1. 
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Currently, such models require data on species abundances (Ulrich and Ollik (2005), 

which is not always available or accurate (e.g. for plants). Within EU-BON we will explore 

the potential of extending RAD-based models to occupancy data. For example, Jenkins 

(2011) introduced an occupancy-based pattern equivalent to RADs, the ranked species 

occupancy curve (rSOC), which plots the proportion of occupied quadrats against species 

rank, giving the highest rank to the species with the highest prevalence. Jenkins (2011) 

introduces 6 different models that may fit an empirical rSOC, and Hui (2012) has since added 

one additional model. In a similar manner, Buzas and Culver (1999) developed an 

occupancy-based version of the log-series distribution.  

 

6. Pair correlation function   (Azaele et al., unpublished) 

 

As part of EU FP7 SCALES project, Azaele et al. (unpublished) developed an up-scaling 

model that builds on the intrinsic relationships among patterns of species richness, 

abundance, and spatial turnover. The model introduces a framework that links and predicts 

the profile of the species-area relationship and the species-abundance distributions (SAD) 

across scales when a limited number of spatially-scattered samples are available. The strength 

of the approach is in its ability to draw inferences about biodiversity scaling without any 

specific assumptions pertaining to the nature of interactions, the geographical distributions of 

individuals or ecological processes.  

Firstly, the model captures the spatial structure of species abundances (while accounting 

for spatial intra-specific aggregation) by a spatial Pair Correlation Function (PCF) – a 

function that describes the correlation in species’ abundances between pairs of samples as a 

function of the distance between them. The PCF is first estimated empirically and then the 

empirical PCF is fitted with a function, chosen such that it provides a good fit to the empirical 

data (e.g. a modified Bessel Function of the second kind).  

Next, the model decides on a certain type of SAD, and assumes that the same SAD type 

can describe the SAD at various scales by altering the values of the parameters of the 

probability distribution. Therefore, it is important to select a SAD type that is flexible enough 

to encompass a wide range of SAD profiles (e.g. a gamma function).  In the third step, 

information encompassed by the PCF is used to describe the scaling properties of the SAD 

parameters, i.e., the change in the parameter values with scale.  This step provides the link 

between the PCF and the spatial Species-Abundance Distribution (sSAD) – a biodiversity 
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pattern describing the number of species with a given number of individuals when we focus 

on a particular area. 

Beside predictions of the sSAD, the derived equations may be used to predict the entire 

profile of the SAR, based on the parameters of the PCF and additional information on the 

total number of species and total number of individuals in the larger extent. Since it requires 

knowledge of the total number of species, in this form the derived SAR function cannot be 

used to up-scale diversity. However, after adding the known number of species at one scale 

(e.g., fine-resolution samples) that is needed to anchor the SAR and sSAD curves, the derived 

SAR function may also be used the other way around: to predict the number of species in the 

large extent.  

  



Milestone report (MS321) EU BON FP7 - 308454 

 

  Page 19 of 29 
 

Section 2:   

Subtask 3.2.2 –  Down-scaling species occupancy from coarse to fine scales 

 

Informed decision making in conservation and management requires information on species’ 

area of occupancy at fine resolutions. However, it is often logistically impractical to sample 

all locations at a fine resolution across a large extent. Therefore, in most systems and for most 

species, the area of occupancy at fine resolution remains unknown. On the other hand, 

coarse-resolution distribution patterns are becoming widely available for a large number of 

species, either from published atlases or from public databases containing a large number of 

occasional and haphazardly collected observations (e.g. GBIF), that nonetheless often 

represent the cumulative efforts of thousands of collectors over hundreds of years. However, 

such information is usually at too coarse a scale for practical use in conservation and 

management. In subtask 3.2.2 we include a set of tools aiming to fill this gap in information 

by predicting the hard-to-measure proportion of occupied cells at fine-scaled resolutions over 

a large extent from the widely available coarse-resolution occurrence patterns.  

To apply any of the models described below to a given species, the required input data 

includes only a grid-based distribution pattern at relatively coarse resolution, for which the 

species is found in more than one cell (scale of endemism), but not in all cells (scale of 

saturation). In order to assess model performance the actual distribution pattern of the species 

at fine-resolution is required. However, as this will rarely be available, for a more realistic 

assessment of accuracy, a large enough set of fine resolution samples is needed such that 

enough samples may be used as independent test data.  

A practical application of down-scaling estimates of species occupancy from haphazard 

observation data lies in calculating species’ Area of Occupancy as part of an IUCN Red List 

assessment of a species conservation status. Quantified thresholds of range size, expressed as 

Area of Occupancy or Extent of Occurrence, determine which of three threatened categories 

(Vulnerable, Endangered or Critically Endangered) a species can be assigned to. Although 

Area of Occupancy varies between threatened categories and scales with Extent of 

Occurrence (the smallest convex hull encompassing all known localities of a species), Area 

of Occupancy was not designed to be calculated from the kind of haphazard observation data 

represented by preserved specimens in natural history collections, even though in many cases 

these represent the best and most readily available source of verified range information for 

less well-known species.  Area of Occupancy is very scale-sensitive: the finer the resolution 
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of the grid, the less area appears to be occupied by a species.  Thus for it to be useful in 

conservation risk assessment, it either has to be applied with a specified grain, or else the 

threshold criteria needs to shift with grain. As a result, Area of Occupancy is seldom used as 

a criterion in Red List assessments and an important source of potential information 

influencing the conservation rating assigned to a species is generally overlooked. Applying 

the most suitable down-scaling method to natural history collections data to estimate 

accurately species occupancy against the appropriate threshold will improve the reliability of 

Red List assessments, and make it possible for species mapped at different scales of 

resolution to be compared, increasing the potential of natural history specimens for assessing 

the conservation status of poorly-known species. 

We have selected ten of the most widely-used methods for down-scaling occupancy that 

have been incorporated in recent articles comparing the performances of down-scaling 

methods (Azaele et al. 2012, Barwell et al. 2014). Nine of the models have been preliminarily 

coded to be made available as a package in the open-source programming environment R (R 

Development Core Team 2011). The majority of the models use the existing occupancy-area 

relationship (OAR) at larger resolutions to extrapolate occupancy at finer resolutions. These 

models range from a simple Poisson model which assumes independence of individuals, to 

models of varying complexity that incorporate the spatial aggregation of individuals. The 

final model, the Hui model (Hui et al. 2006), is a spatially-explicit model requiring 

information at only one coarse grain.  

 

The ten models selected are: 

1. Poisson model   (pois; Wright 1991) 

 

 ୮ܲ୭୧ୱሺܣሻ ൌ 1 െ ݁ିγ஺  (17) 

Where Ppois is the probability of finding the species within a cell of size A, if it has a constant 

density γ. The Poisson model is the simplest model as it assumes independence of individuals 

so that all inter- and intra-specific interactions are negligible across an infinite landscape.  

While it is seldom proposed as a practical down-scaling method, it is useful to include it for 

comparative purposes. 
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2. Power-law   (PL; Kunin 1998)  

 

Models 2, 3 and 4 are three closely related models that seek to extrapolate the OAR slope at 

larger resolutions to predict occupancies at finer resolutions. The simplest of these, the 

power-law model, is a simple linear extrapolation of the log-log OAR slope: 

 ୔ܲ୐ሺܣሻ ൌ  ௭ (18)ܣܿ

It assumes that the spatial distribution of a species is fractal across resolution sizes. However, 

it cannot be accurate across all spatial resolutions as it will naturally project beyond the 

saturation scale (the scale of resolution at which the entire focal extent is occupied). Models 3 

and 4 are modifications of this basic power-law model to account for this shortcoming. 

 

3. Nachman   (nach; Nachman 1981) 

 

The Nachman model achieves this by bending down the power-law function at the largest 

spatial resolutions (close to the scale of saturation) where the fractal-based power-law model 

fails. 

 ୬ܲୟୡ୦ሺܣሻ ൌ 1 െ ݁ି௖஺
೥
 (19) 

 

4. Logistic   (logis; Hanski and Gyllenberg 1997) 

 

The logistic model is generated from the theory of metapopulation dynamics. 

 ୪ܲ୭୥୧ୱሺܣሻ ൌ
௖஺೥

ଵା௖஺೥
 (20) 

 

5. Negative binomial   (NB; He and Gaston 2000)  

 

Models 5, 6, 7 and 8 are all based around the negative binomial distribution, which 

incorporates a parameter, k, accounting for the aggregation of individuals. 

 ୒ܲ୆ሺܣሻ ൌ 1 െ ቀ1 ൅ ஓ୅

௞
ቁ
ି௞

 (21) 

Where γ is mean density and k is a parameter measuring the degree of over-dispersion (a 

small, positive k = individuals are spatially aggregated; a very large k = individuals are 

distributed independently).  
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6. Finite negative binomial   (FNB; Zillio and He 2010) 

 

An assumption of Model 5 is that the landscape is infinite. Model 6 corrects this unrealistic 

assumption to accommodate the finiteness of real-world landscapes and populations. 

 ୊ܲ୒୆ሺܣሻ ൌ 1 െ
Гቀேାಲబೖ

ಲ
ି௞ቁГቀಲబೖ

ಲ
ቁ

Гቀேାಲబೖ
ಲ
ቁГቀಲబೖ

ಲ
ି௞ቁ

 (22) 

Where Г is the gamma function, N is the total number of individuals in the study area A0. 

 

7. Improved negative binomial   (INB; He and Gaston 2003) 

 

Models 5 and 6 maintain a constant dispersion parameter, k, across resolutions. However, this 

is unlikely to be true for many species, where typically individuals are more aggregated at 

finer resolutions than coarser resolutions. Therefore, the INB model incorporates a scale-

dependent k. In our case we will follow Azaele et al. (2012) and vary k with scale according 

to Taylor’s power law and so k becomes a function of area: ݇ሺܣሻ ൌγܣ/ሺ1 െ ܿሺγܣሻ௕ିଵሻ, 

giving: 

 ୍ܲ ୒୆ሺܣሻ ൌ 1 െ ሾܿሺγܣሻ௕ିଵሿ
γಲ

భష೎ሺγಲሻ್షభ (23) 

Where c and b are constant parameters that account for spatial aggregation. The Taylor’s 

power law scaling of k can of course be replaced with other scaling functions. 

 

8. Generalised negative binomial   (GNB; He et al. 2002) 

 

Models 2,3 and 4 are all closely related, and along with models 1 and 5 they can be 

summarised within a single generalised negative binomial model: 

 ୋܲ୒୆ሺܣሻ ൌ 1 െ ቀ1 ൅ ௖஺೥

௞
ቁ
ି௞

 (24) 

Each of the models can be achieved by varying k and/or c and z:   

If k = -1, PGNB(A) = PPL(A); 

If k = 1, PGNB(A) = Plogis(A); 

If k is large, PGNB(A) = Pnach(A); 

If k is large and c = γ and z = 1, PGNB(A) = Ppois(A); 

If k is finite, c = γ and z = 1, PGNB(A) = PNB(A). 
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9. Thomas   (thom; Azaele et al. 2012) 

 

The Thomas model differs from previous models in incorporating spatial point processes, 

which allows for a more flexible approach to modelling spatial aggregations. The Thomas 

model uses shot noise Cox processes, but it is possible to use a number of other spatial point 

processes. The model can therefore be summarised as: 

 ୲ܲ୦୭୫ሺܣሻ ൌ 1 െ ݌ݔ݁ ቄെߩ ׬ ቂ1 െ ݌ݔ݁ ቀെμ׬ ݇ሺ‖ Ԧܿ െ Ԧ஺ݔԦ‖ሻ݀ݔ 	ቁቃ ݀ Ԧܿቅ (25) 

Where ݇ሺ‖ݔԦ‖ሻ is an isotropic bivariate Gaussian distribution with variance σ2. In order to 

simplify the model several key assumptions are made: μ is a constant; there is translational 

and rotational invariance; the geometry of the study region is smoothed; there is temporal 

stationarity; and the model uses a simple form for the pair correlation function. 

 

10. Hui   (Hui et al. 2006) 

 

All of the previous models are spatially-implicit: the models fit the OAR to multiple coarse 

resolutions which are then extrapolated to finer resolutions without incorporating any 

information on the spatial distribution of individuals. The Hui model is the only spatially-

explicit model considered here; it furthermore differs from the others in that it requires 

species occupancy at only one resolution. It uses conditional probabilities (joint-count 

statistics) using two estimated probabilities: the probability that a randomly chosen cell is 

occupied; and the probability that a cell adjacent to an occupied cell will also be occupied. As 

the occupancy of a coarse-grain cell is the combination of occupancies of multiple fine-grain 

cells (a percolation  process), Bayes’ theorem can then define the relationship between the 

known probabilities of occupancy at the coarse grain to describe the distribution of 

individuals across a presence-absence grid at a finer grain. 
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Section 3: 

Subtask 3.2.3 –  Downscaling from landscape predictions of abundance and 

distributions to local monitoring and observations  

 

Background 

Individual-based, dynamic simulation models are a powerful tool to strengthen the link 

between ecological processes and observed patterns. Their power lies with their capacity to 

examine how the decisions and processes occurring at the individual level – the actual 

“living” ecological level – translate into larger-scale, emergent patterns such as connectivity, 

population viability, or trends in abundance or distribution (e.g. species’ decline, range-shifts, 

or changes in community structures if examined across multiple species). Two core models to 

be used over the course of EU BON are FunCon (Pe'er et al. 2011) and RangeShifter (Bocedi 

et al. 2014), models that address fundamental questions about functional connectivity, 

population dynamics and range-shifts in fragmented landscapes and under land-use and 

climate-changes. 

While offering better understanding of the links between drivers, ecological processes and 

patterns, such dynamic models are both parameter-hungry and retain large uncertainty. 

Consequently, the seeming predictions which they may offer – e.g. with respect to species 

distributions or expansion processes, should be taken more as heuristic depictions rather than 

actual projections or predictions. This is especially important when the aim is to link larger-

scale predictions with locally-observed patterns – i.e., when scaling down to the resolution at 

which empirical data are often collected.  

One way to address this challenge is by adopting a “virtual ecologist” (VE) approach. The 

basic idea is to mimic the process of field sampling: an ecologist can only obtain partial 

information from the world, and based on this information, attempt to successfully identify an 

ecological pattern. The benefits of employing such a procedure in a modelling framework is 

that the “real” pattern is known or even pre-determined by the user (i.e., model outcomes). 

Thus, one can use this approach to test spatiotemporal patterns of abundance/presence against 

local-scale observations; to gain better capacity of interpreting (existing) biodiversity data; 

and assessing the efficiency of alternative sampling designs (e.g. frequency, intensity) as well 

as sources of error (e.g. species detectability). The virtual-ecologist approach has been used 

by modellers for over 15 years (e.g., Grimm et al. 1999, Moilanen 1999, Tyre et al. 2001), 

but has only taken off recently following a review by Zurell et al. (2010) describing the 
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power, applications and potentials of the approach. Recent applications of the approach, of 

relevance to the EU BON project, relate to assessing the scale-related relationships between 

species and their environments (Lechner et al. 2012) and optimization of monitoring design 

and efforts (Albert et al. 2010, Nuno et al. 2013). 

 

Model concepts 

The model is envisaged as a stand-alone program that processes the output of existing 

individual-based models such as FunCon (Pe'er et al. 2011) and RangeShifter (Bocedi et al. 

2014). The common attribute of these models, as well as many others, is their capacity to 

produce maps depicting the predicted distribution and abundance of individuals over space 

and time, i.e. during and at the end of the simulated time span. This information provides a 

tentative picture of “reality”, while the VE model then samples from it based on a predefined 

design – e.g. systematic, random, or stratified-random; across a whole patch or in specific 

points across a number of patches. Furthermore, sampling can be performed repeatedly 

during the simulation process to ask how well a specific sampling design (i.e., “observed 

pattern”) reflects the assumed (simulated) pattern of species increase, decline, expansion, 

contraction, or range-shift over time. On top of the spatiotemporal design, errors can be 

incorporated due to known factors such as detectability of the species (e.g. depending on 

habitat or season) or the efficiency of the observer (e.g. volunteer versus experts). Finally, the 

sampling design itself can represent typical limitations in monitoring, including budget, time-

limitations or availability of experts or volunteers, which force trade-offs between the number 

of sites sampled, the number of visits per site per year, and the return time between years 

(i.e., number of consecutive sampling seasons, or gaps between years). 

Accordingly, the virtual ecologist model will enable users to make a range of (typical) 

decisions with respect to monitoring efforts, and to test the impact of these decisions on the 

observed (predicted) patterns compared to (typical) model outputs – e.g. species’ distribution 

(e.g. density versus patch size), or trends in abundance or distribution over time.  

In summary, the suggested implementation of the virtual ecologist approach will provide the 

following benefits: 

1. It will enhance the interpretation of existing biodiversity monitoring data by allowing 

testing of spatiotemporal patterns of abundance/presence against observations, given 

the sampling design applied. Thereby, it will improve the inference of biodiversity 

patterns across scales. 
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2. It can enable testing of the efficiency of specific sampling designs, by application to 

several simulated spatiotemporal patterns of abundance/presence. Thereby, it will 

support the design of future monitoring projects. 

3. It can help to strengthen the link between models and observations, thereby 

potentially guiding the onward development and parameterization of IBMs to better 

utilise monitoring data. 

 

Model components 

According to Zurell et al. (2010), a virtual ecologist model requires 4 components: “a) the 

virtual ecological model, (b) the virtual sampling model, (c) (statistical) modelling and (d) 

evaluation”. The first component is primarily determined by the nature of the model with 

which the VE model will interact – namely, whether the IBM (ecological model) examines a 

spatial pattern (e.g. connectivity) or spatiotemporal pattern for a given species, or perhaps a 

larger-scale ecological pattern such as community structure over time or space. The second 

component is the core of the VE model, defining the sampling design according to a set of 

criteria such as the nature of the ecological entity to investigate (e.g. common-ness, 

seasonality, population fluctuation over time of species, guilds,  communities) – as imposed 

by the ecological model – and the observers (budget, manpower, desired aims). The third 

component is the statistical analysis, aiming to assess whether a “known” pattern (the 

ecological model outcomes) was successfully captured according to predefined sets of criteria 

(e.g. statistical significance). For instance, if a population trend over time is the pattern to 

capture, one would need to define the statistical method to identify it (e.g. regression) and the 

criteria for success. We note, however, that this component may likely not be part of the 

model itself: due to the multitude of potential statistical models, we are considering simply 

offering some links to typical relevant statistics, in an R environment, to compare the 

ecological model (providing “full information”, or “real world”) with the sub-sampled model. 

On top of these components, we are currently examining the potentials of the model to 

enable, or include, optimization processes to test alternative designs (qualitatively or 

quantitatively). This could serve two aims: a) identifying optimal design, or b) guiding 

improvements in a given (real) monitoring design.  
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Parameters 

a) Many input parameters (and units) will be defined by the outputs provided by the 

ecological simulation model(s) against which the VE will be applied. For instance, 

FunCon and RangeShifter offer a range of population size and distribution variables, 

on top of virtual or real grid-based maps (= land-cover or habitat maps). 

b) Monitoring design: this group of parameters relate most closely to the decisions taken 

by a coordinator. They include the following parameters: 

- Total budget (and, accordingly, costs per observer); 

- Number of sites 

- Sampling frequency within a year/season 

- Return time and/or number of subsequent sampling years 

c) Sources of error: these will cover 2 main sources of observation error: 

- Observer error, stochastic (individual) or systematic (level of expertise, learning over 

time) 

- Detectability (independent of observer), which could be adjusted according to the 

target species. Future versions may also consider habitat-, age- or season- effects on 

species detectability.  

d) Optimization would be enabled by batch-simulations followed by post-processing 

using, e.g., R. Thus, to enable optimization of monitoring, we will offer the option of 

exploring certain parameter sets or ranges. Upscaling or downscaling may be 

approached with this tool by repeating the same analyses over maps of different scale 

and resolution.  

 

Potential applications 

a) downscaling the outcomes of analyses performed in WP4.2 from the landscape level 

(or up to species’ ranges) to the local level; 

b) testing alternative scenarios in terms of the projections provided in WP4.3 

c) optimizing monitoring design in time and space (WP4.4) and 

d) quantifying different sources of uncertainty at different modelling steps, mapping 

them, and offering guidelines for reducing sources of uncertainty that are relevant for 

decision-making (WP4.5) 
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